关于KTRMINEX-SC75/10联轴器2.4856 的信息

本文目录一览:

急求:两级圆柱齿轮减速器课程设计

设 计 任 务 书

一、 课程设计题目:

设计带式运输机传动装置(简图如下)

原始数据:

数据编号 3 5 7 10

运输机工作转矩T/(N.m) 690 630 760 620

运输机带速V/(m/s) 0.8 0.9 0.75 0.9

卷筒直径D/mm 320 380 320 360

工作条件:

连续单向运转,工作时有轻微振动,使用期限为10年,小批量生产,单班制工作(8小时/天)。运输速度允许误差为 。

二、 课程设计内容

1)传动装置的总体设计。

2)传动件及支承的设计计算。

3)减速器装配图及零件工作图。

4)设计计算说明书编写。

每个学生应完成:

1) 部件装配图一张(A1)。

2) 零件工作图两张(A3)

3) 设计说明书一份(6000~8000字)。

本组设计数据:

第三组数据:运输机工作轴转矩T/(N.m) 690 。

运输机带速V/(m/s) 0.8 。

卷筒直径D/mm 320 。

已给方案:外传动机构为V带传动。

减速器为两级展开式圆柱齿轮减速器。

第一部分 传动装置总体设计

一、 传动方案(已给定)

1) 外传动为V带传动。

2) 减速器为两级展开式圆柱齿轮减速器。

3) 方案简图如下:

二、该方案的优缺点:

该工作机有轻微振动,由于V带有缓冲吸振能力,采用V带传动能减小振动带来的影响,并且该工作机属于小功率、载荷变化不大,可以采用V带这种简单的结构,并且价格便宜,标准化程度高,大幅降低了成本。减速器部分两级展开式圆柱齿轮减速,这是两级减速器中应用最广泛的一种。齿轮相对于轴承不对称,要求轴具有较大的刚度。高速级齿轮常布置在远离扭矩输入端的一边,以减小因弯曲变形所引起的载荷沿齿宽分布不均现象。原动机部分为Y系列三相交流 异步电动机。

总体来讲,该传动方案满足工作机的性能要求,适应工作条件、工作可靠,此外还结构简单、尺寸紧凑、成本低传动效率高。

计 算 与 说 明 结果

三、原动机选择(Y系列三相交流异步电动机)

工作机所需功率: =0.96 (见课设P9)

传动装置总效率: (见课设式2-4)

(见课设表12-8)

电动机的输出功率: (见课设式2-1)

选择电动机为Y132M1-6 m型 (见课设表19-1)

技术数据:额定功率( ) 4 满载转矩( ) 960

额定转矩( ) 2.0 最大转矩( ) 2.0

Y132M1-6电动机的外型尺寸(mm): (见课设表19-3)

A:216 B:178 C:89 D:38 E:80 F:10 G:33 H:132 K:12 AB:280 AC:270 AD:210 HD:315 BB:238 L:235

四、传动装置总体传动比的确定及各级传动比的分配

1、 总传动比: (见课设式2-6)

2、 各级传动比分配: (见课设式2-7)

初定

第二部分 V带设计

外传动带选为 普通V带传动

1、 确定计算功率:

1)、由表5-9查得工作情况系数

2)、由式5-23(机设)

2、选择V带型号

查图5-12a(机设)选A型V带。

3.确定带轮直径

(1)、参考图5-12a(机设)及表5-3(机设)选取小带轮直径

(电机中心高符合要求)

(2)、验算带速 由式5-7(机设)

(3)、从动带轮直径

查表5-4(机设) 取

(4)、传动比 i

(5)、从动轮转速

4.确定中心距 和带长

(1)、按式(5-23机设)初选中心距

(2)、按式(5-24机设)求带的计算基础准长度L0

查图.5-7(机设)取带的基准长度Ld=2000mm

(3)、按式(5-25机设)计算中心距:a

(4)、按式(5-26机设)确定中心距调整范围

5.验算小带轮包角α1

由式(5-11机设)

6.确定V带根数Z

(1)、由表(5-7机设)查得dd1=112 n1=800r/min及n1=980r/min时,单根V带的额定功率分呷为1.00Kw和1.18Kw,用线性插值法求n1=980r/min时的额定功率P0值。

(2)、由表(5-10机设)查得△P0=0.11Kw

(3)、由表查得(5-12机设)查得包角系数

(4)、由表(5-13机设)查得长度系数KL=1.03

(5)、计算V带根数Z,由式(5-28机设)

取Z=5根

7.计算单根V带初拉力F0,由式(5-29)机设。

q由表5-5机设查得

8.计算对轴的压力FQ,由式(5-30机设)得

9.确定带轮的结构尺寸,给制带轮工作图

小带轮基准直径dd1=112mm采用实心式结构。大带轮基准直径dd2=280mm,采用孔板式结构,基准图见零件工作图。

第三部分 各齿轮的设计计算

一、高速级减速齿轮设计(直齿圆柱齿轮)

1.齿轮的材料,精度和齿数选择,因传递功率不大,转速不高,材料按表7-1选取,都采用45号钢,锻选项毛坯,大齿轮、正火处理,小齿轮调质,均用软齿面。齿轮精度用8级,轮齿表面精糙度为Ra1.6,软齿面闭式传动,失效形式为占蚀,考虑传动平稳性,齿数宜取多些,取Z1=34 则Z2=Z1i=34×2.62=89

2.设计计算。

(1)设计准则,按齿面接触疲劳强度计算,再按齿根弯曲疲劳强度校核。

(2)按齿面接触疲劳强度设计,由式(7-9)

T1=9.55×106×P/n=9.55×106×5.42/384=134794 N?mm

由图(7-6)选取材料的接触疲劳,极限应力为

бHILim=580 бHILin=560

由图 7-7选取材料弯曲疲劳极限应力

бHILim=230 бHILin=210

应力循环次数N由式(7-3)计算

N1=60n, at=60×(8×360×10)=6.64×109

N2= N1/u=6.64×109/2.62=2.53×109

由图7-8查得接触疲劳寿命系数;ZN1=1.1 ZN2=1.04

由图7-9查得弯曲 ;YN1=1 YN2=1

由图7-2查得接触疲劳安全系数:SFmin=1.4 又YST=2.0 试选Kt=1.3

由式(7-1)(7-2)求许用接触应力和许用弯曲应力

将有关值代入式(7-9)得

则V1=(πd1tn1/60×1000)=1.3m/s

( Z1 V1/100)=1.3×(34/100)m/s=0.44m/s

查图7-10得Kv=1.05 由表7-3查和得K A=1.25.由表7-4查得Kβ=1.08.取Kα=1.05.则KH=KAKVKβKα=1.42 ,修正

M=d1/Z1=1.96mm

由表7-6取标准模数:m=2mm

(3) 计算几何尺寸

d1=mz1=2×34=68mm

d2=mz2=2×89=178mm

a=m(z1+z2)/2=123mm

b=φddt=1×68=68mm

取b2=65mm b1=b2+10=75

3.校核齿根弯曲疲劳强度

由图7-18查得,YFS1=4.1,YFS2=4.0 取Yε=0.7

由式(7-12)校核大小齿轮的弯曲强度.

二、低速级减速齿轮设计(直齿圆柱齿轮)

1.齿轮的材料,精度和齿数选择,因传递功率不大,转速不高,材料按表7-1选取,都采用45号钢,锻选项毛坯,大齿轮、正火处理,小齿轮调质,均用软齿面。齿轮精度用8级,轮齿表面精糙度为Ra1.6,软齿面闭式传动,失效形式为点蚀,考虑传动平稳性,齿数宜取多些,取Z1=34

则Z2=Z1i=34×3.7=104

2.设计计算。

(1) 设计准则,按齿面接触疲劳强度计算,再按齿根弯曲疲劳强度校核。

(2)按齿面接触疲劳强度设计,由式(7-9)

T1=9.55×106×P/n=9.55×106×5.20/148=335540 N?mm

由图(7-6)选取材料的接触疲劳,极限应力为

бHILim=580 бHILin=560

由图 7-7选取材料弯曲疲劳极阴应力

бHILim=230 бHILin=210

应力循环次数N由式(7-3)计算

N1=60n at=60×148×(8×360×10)=2.55×109

N2= N1/u=2.55×109/3.07=8.33×108

由图7-8查得接触疲劳寿命系数;ZN1=1.1 ZN2=1.04

由图7-9查得弯曲 ;YN1=1 YN2=1

由图7-2查得接触疲劳安全系数:SFmin=1.4 又YST=2.0 试选Kt=1.3

由式(7-1)(7-2)求许用接触应力和许用弯曲应力

将有关值代入式(7-9)得

则V1=(πd1tn1/60×1000)=0.55m/s

( Z1 V1/100)=0.55×(34/100)m/s=0.19m/s

查图7-10得Kv=1.05 由表7-3查和得K A=1.25.由表7-4查得Kβ=1.08.取Kα=1.05.则KH=KAKVKβKα=1.377 ,修正

M=d1/Z1=2.11mm

由表7-6取标准模数:m=2.5mm

(3) 计算几何尺寸

d1=mz1=2.5×34=85mm

d2=mz2=2.5×104=260mm

a=m(z1+z2)/2=172.5mm

b=φddt=1×85=85mm

取b2=85mm b1=b2+10=95

3.校核齿根弯曲疲劳强度

由图7-18查得,YFS1=4.1,YFS2=4.0 取Yε=0.7

由式(7-12)校核大小齿轮的弯曲强度.

总结:高速级 z1=34 z2=89 m=2

低速级 z1=34 z2=104 m=2.5

第四部分 轴的设计

高速轴的设计

1.选择轴的材料及热处理

由于减速器传递的功率不大,对其重量和尺寸也无特殊要求故选择常用材料45钢,调质处理.

2.初估轴径

按扭矩初估轴的直径,查表10-2,得c=106至117,考虑到安装联轴器的轴段仅受扭矩作用.取c=110则:

D1min=

D2min=

D3min=

3.初选轴承

1轴选轴承为6008

2轴选轴承为6009

3轴选轴承为6012

根据轴承确定各轴安装轴承的直径为:

D1=40mm

D2=45mm

D3=60mm

4.结构设计(现只对高速轴作设计,其它两轴设计略,结构详见图)为了拆装方便,减速器壳体用剖分式,轴的结构形状如图所示.

(1).各轴直径的确定

初估轴径后,即可按轴上零件的安装顺序,从左端开始确定直径.该轴轴段1安装轴承6008,故该段直径为40mm。2段装齿轮,为了便于安装,取2段为44mm。齿轮右端用轴肩固定,计算得轴肩的高度为4.5mm,取3段为53mm。5段装轴承,直径和1段一样为40mm。4段不装任何零件,但考虑到轴承的轴向定位,及轴承的安装,取4段为42mm。6段应与密封毛毡的尺寸同时确定,查机械设计手册,选用JB/ZQ4606-1986中d=36mm的毛毡圈,故取6段36mm。7段装大带轮,取为32mmdmin 。

(2)各轴段长度的确定

轴段1的长度为轴承6008的宽度和轴承到箱体内壁的距离加上箱体内壁到齿轮端面的距离加上2mm,l1=32mm。2段应比齿轮宽略小2mm,为l2=73mm。3段的长度按轴肩宽度公式计算l3=1.4h;去l3=6mm,4段:l4=109mm。l5和轴承6008同宽取l5=15mm。l6=55mm,7段同大带轮同宽,取l7=90mm。其中l4,l6是在确定其它段长度和箱体内壁宽后确定的。

于是,可得轴的支点上受力点间的跨距L1=52.5mm,L2=159mm,L3=107.5mm。

(3).轴上零件的周向固定

为了保证良好的对中性,齿轮与轴选用过盈配合H7/r6。与轴承内圈配合轴劲选用k6,齿轮与大带轮均采用A型普通平键联接,分别为16*63 GB1096-1979及键10*80 GB1096-1979。

(4).轴上倒角与圆角

为保证6008轴承内圈端面紧靠定位轴肩的端面,根据轴承手册的推荐,取轴肩圆角半径为1mm。其他轴肩圆角半径均为2mm。根据标准GB6403.4-1986,轴的左右端倒角均为1*45。。

5.轴的受力分析

(1) 画轴的受力简图。

(2) 计算支座反力。

Ft=2T1/d1=

Fr=Fttg20。=3784

FQ=1588N

在水平面上

FR1H=

FR2H=Fr-FR1H=1377-966=411N

在垂直面上

FR1V=

Fr2V=Ft- FR1V=1377-352=1025N

(3) 画弯矩图

在水平面上,a-a剖面左侧

MAh=FR1Hl3=966 52.5=50.715N?m

a-a剖面右侧

M’Ah=FR2Hl2=411 153=62.88 N?m

在垂直面上

MAv=M’AV=FR1Vl2=352×153=53.856 N?m

合成弯矩,a-a剖面左侧

a-a剖面右侧

画转矩图

转矩 3784×(68/2)=128.7N?m

6.判断危险截面

显然,如图所示,a-a剖面左侧合成弯矩最大、扭矩为T,该截面左侧可能是危险截面;b-b截面处合成湾矩虽不是最大,但该截面左侧也可能是危险截面。若从疲劳强度考虑,a-a,b-b截面右侧均有应力集中,且b-b截面处应力集中更严重,故a-a截面左侧和b-b截面左、右侧又均有可能是疲劳破坏危险截面。

7.轴的弯扭合成强度校核

由表10-1查得

(1)a-a剖面左侧

3=0.1×443=8.5184m3

=14.57

(2)b-b截面左侧

3=0.1×423=7.41m3

b-b截面处合成弯矩Mb:

=174 N?m

=27

8.轴的安全系数校核:由表10-1查得 (1)在a-a截面左侧

WT=0.2d3=0.2×443=17036.8mm3

由附表10-1查得 由附表10-4查得绝对尺寸系数 ;轴经磨削加工, 由附表10-5查得质量系数 .则

弯曲应力

应力幅

平均应力

切应力

安全系数

查表10-6得许用安全系数 =1.3~1.5,显然S ,故a-a剖面安全.

(2)b-b截面右侧

抗弯截面系数 3=0.1×533=14.887m3

抗扭截面系数WT=0.2d3=0.2×533=29.775 m3

又Mb=174 N?m,故弯曲应力

切应力

由附表10-1查得过盈配合引起的有效应力集中系数 。 则

显然S ,故b-b截面右侧安全。

(3)b-b截面左侧

WT=0.2d3=0.2×423=14.82 m3

b-b截面左右侧的弯矩、扭矩相同。

弯曲应力

切应力

(D-d)/r=1 r/d=0.05,由附表10-2查得圆角引起的有效应力集中系数 。由附表10-4查得绝对尺寸系数 。又 。则

显然S ,故b-b截面左侧安全。

第五部分 校 核

高速轴轴承

FR2H=Fr-FR1H=1377-966=411N

Fr2V=Ft- FR1V=1377-352=1025N

轴承的型号为6008,Cr=16.2 kN

1) FA/COr=0

2) 计算当量动载荷

查表得fP=1.2径向载荷系数X和轴向载荷系数Y为X=1,Y=0

=1.2×(1×352)=422.4 N

3) 验算6008的寿命

验算右边轴承

键的校核

键1 10×8 L=80 GB1096-79

则强度条件为

查表许用挤压应力

所以键的强度足够

键2 12×8 L=63 GB1096-79

则强度条件为

查表许用挤压应力

所以键的强度足够

联轴器的选择

联轴器选择为TL8型弹性联轴器 GB4323-84

减速器的润滑

1.齿轮的润滑

因齿轮的圆周速度12 m/s,所以才用浸油润滑的润滑方式。

高速齿轮浸入油里约0.7个齿高,但不小于10mm,低速级齿轮浸入油高度约为1个齿高(不小于10mm),1/6齿轮。

2.滚动轴承的润滑

因润滑油中的传动零件(齿轮)的圆周速度V≥1.5~2m/s所以采用飞溅润滑,

第六部分 主要尺寸及数据

箱体尺寸:

箱体壁厚

箱盖壁厚

箱座凸缘厚度b=15mm

箱盖凸缘厚度b1=15mm

箱座底凸缘厚度b2=25mm

地脚螺栓直径df=M16

地脚螺栓数目n=4

轴承旁联接螺栓直径d1=M12

联接螺栓d2的间距l=150mm

轴承端盖螺钉直径d3=M8

定位销直径d=6mm

df 、d1 、d2至外箱壁的距离C1=18mm、18 mm、13 mm

df、d2至凸缘边缘的距离C2=16mm、11 mm

轴承旁凸台半径R1=11mm

凸台高度根据低速轴承座外半径确定

外箱壁至轴承座端面距离L1=40mm

大齿轮顶圆与内箱壁距离△1=10mm

齿轮端面与内箱壁距离△2=10mm

箱盖,箱座肋厚m1=m=7mm

轴承端盖外径D2 :凸缘式端盖:D+(5~5.5)d3

以上尺寸参考机械设计课程设计P17~P21

传动比

原始分配传动比为:i1=2.62 i2=3.07 i3=2.5

修正后 :i1=2.5 i2=2.62 i3=3.07

各轴新的转速为 :n1=960/2.5=3.84

n2=384/2.61=147

n3=147/3.07=48

各轴的输入功率

P1=pdη8η7 =5.5×0.95×0.99=5.42

P2=p1η6η5=5.42×0.97×0.99=5.20

P3=p2η4η3=5.20×0.97×0.99=5.00

P4=p3η2η1=5.00×0.99×0.99=4.90

各轴的输入转矩

T1=9550Pdi1η8η7/nm=9550×5.5×2.5×0.95×0.99=128.65

T2= T1 i2η6η5=128.65×2.62×0.97×0.99=323.68

T3= T2 i3η4η3=323.68×3.07×0.97×0.99=954.25

T4= T3 η2η1=954.23×0.99×0.99=935.26

轴号 功率p 转矩T 转速n 传动比i 效率η

电机轴 5.5 2.0 960 1 1

1 5.42 128.65 384 2.5 0.94

2 5.20 323.68 148 2.62 0.96

3 5.00 954.25 48 3.07 0.96

工作机轴 4.90 935.26 48 1 0.98

齿轮的结构尺寸

两小齿轮采用实心结构

两大齿轮采用复板式结构

齿轮z1尺寸

z=34 d1=68 m=2 d=44 b=75

d1=68

ha=ha*m=1×2=2mm

hf=( ha*+c*)m=(1+0.25)×2=2.5mm

h=ha+hf=2+2.5=4.5mm

da=d1+2ha=68+2×2=72mm

df=d1-2hf=68-2×2.5=63

p=πm=6.28mm

s=πm/2=3.14×2/2=3.14mm

e=πm/2=3.14×2/2=3.14mm

c=c*m=0.25×2=0.5mm

齿轮z2的尺寸

由轴可 得d2=178 z2=89 m=2 b=65 d4=49

ha=ha*m=1×2=2mm

h=ha+hf=2+2.5=4.5mm

hf=(1+0.5)×2=2.5mm

da=d2+2ha=178+2×2=182

df=d1-2hf=178-2×2.5=173

p=πm=6.28mm

s=πm/2=3.14×2/2=3.14mm

e=πm/2=3.14×2/2=3.14mm

c=c*m=0.25×2=0.5mm

DT≈

D3≈1.6D4=1.6×49=78.4

D0≈da-10mn=182-10×2=162

D2≈0.25(D0-D3)=0.25(162-78.4)=20

R=5 c=0.2b=0.2×65=13

齿轮3尺寸

由轴可得, d=49 d3=85 z3=34 m=2.5 b=95

ha =ha*m=1×2.5=2.5

h=ha+hf=2.5+3.125=5.625

hf=(ha*+c*)m=(1+0.25)×2.5=3.125

da=d3+2ha=85+2×2.5=90

df=d1-2hf=85-2×3.125=78.75

p=πm=3.14×2.5=7.85

s=πm/2=3.14×2.5/2=3.925

e=s c=c*m=0.25×2.5=0.625

齿轮4寸

由轴可得 d=64 d4=260 z4=104 m=2.5 b=85

ha =ha*m=1×2.5=2.5

h=ha+hf=2.5+3.25=5.625

hf=(ha*+c*)m=(1+0.25)×0.25=3.125

da=d4+2ha=260+2×2.5=265

df=d1-2hf=260-2×3.125=253.75

p=πm=3.14×2.5=7.85

s=e=πm/2=3.14×2.5/2=3.925

c=c*m=0.25×2.5=0.625

D0≈da-10m=260-10×2.5=235

D3≈1.6×64=102.4

D2=0.25(D0-D3)=0.25×(235-102.4)=33.15

r=5 c=0.2b=0.2×85=17

参考文献:

《机械设计》徐锦康 主编 机械工业出版社

《机械设计课程设计》陆玉 何在洲 佟延伟 主编

第3版 机械工业出版社

《机械设计手册》

设计心得

机械设计课程设计是机械课程当中一个重要环节通过了3周的课程设计使我从各个方面都受到了机械设计的训练,对机械的有关各个零部件有机的结合在一起得到了深刻的认识。

由于在设计方面我们没有经验,理论知识学的不牢固,在设计中难免会出现这样那样的问题,如:在选择计算标准件是可能会出现误差,如果是联系紧密或者循序渐进的计算误差会更大,在查表和计算上精度不够准

在设计的过程中,培养了我综合应用机械设计课程及其他课程的理论知识和应用生产实际知识解决工程实际问题的能力,在设计的过程中还培养出了我们的团队精神,大家共同解决了许多个人无法解决的问题,在这些过程中我们深刻地认识到了自己在知识的理解和接受应用方面的不足,在今后的学习过程中我们会更加努力和团结。

由于本次设计是分组的,自己独立设计的东西不多,但在通过这次设计之后,我想会对以后自己独立设计打下一个良好的基础。。。

设计题目:设计热处理车间清洗零件用的传送设备上的两级圆柱齿轮减速箱。

目 录

一 课程设计书 2

二 设计要求 2

三 设计步骤 2

1. 传动装置总体设计方案 3

2. 电动机的选择 4

3. 确定传动装置的总传动比和分配传动比 5

4. 计算传动装置的运动和动力参数 5

5. 设计V带和带轮 6

6. 齿轮的设计 8

7. 滚动轴承和传动轴的设计 19

8. 键联接设计 26

9. 箱体结构的设计 27

10.润滑密封设计 30

11.联轴器设计 30

四 设计小结 31

五 参考资料 32

一. 课程设计书

设计课题:

设计一用于带式运输机上的两级展开式圆柱齿轮减速器.运输机连续单向运转,载荷变化不大,空载起动,卷筒效率为0.96(包括其支承轴承效率的损失),减速器小批量生产,使用期限8年(300天/年),两班制工作,运输容许速度误差为5%,车间有三相交流,电压380/220V

表一:

题号

参数 1 2 3 4 5

运输带工作拉力(kN) 2.5 2.3 2.1 1.9 1.8

运输带工作速度(m/s) 1.0 1.1 1.2 1.3 1.4

卷筒直径(mm) 250 250 250 300 300

二. 设计要求

1.减速器装配图一张(A1)。

2.CAD绘制轴、齿轮零件图各一张(A3)。

3.设计说明书一份。

三. 设计步骤

1. 传动装置总体设计方案

2. 电动机的选择

3. 确定传动装置的总传动比和分配传动比

4. 计算传动装置的运动和动力参数

5. 设计V带和带轮

6. 齿轮的设计

7. 滚动轴承和传动轴的设计

8. 键联接设计

9. 箱体结构设计

10. 润滑密封设计

11. 联轴器设计

1.传动装置总体设计方案:

1. 组成:传动装置由电机、减速器、工作机组成。

2. 特点:齿轮相对于轴承不对称分布,故沿轴向载荷分布不均匀,

要求轴有较大的刚度。

3. 确定传动方案:考虑到电机转速高,传动功率大,将V带设置在高速级。

其传动方案如下:

图一:(传动装置总体设计图)

初步确定传动系统总体方案如:传动装置总体设计图所示。

选择V带传动和二级圆柱斜齿轮减速器(展开式)。

传动装置的总效率

=0.96× × ×0.97×0.96=0.759;

为V带的效率, 为第一对轴承的效率,

为第二对轴承的效率, 为第三对轴承的效率,

为每对齿轮啮合传动的效率(齿轮为7级精度,油脂润滑.

因是薄壁防护罩,采用开式效率计算)。

2.电动机的选择

电动机所需工作功率为: P =P /η =1900×1.3/1000×0.759=3.25kW, 执行机构的曲柄转速为n= =82.76r/min,

经查表按推荐的传动比合理范围,V带传动的传动比i =2~4,二级圆柱斜齿轮减速器传动比i =8~40,

则总传动比合理范围为i =16~160,电动机转速的可选范围为n =i ×n=(16~160)×82.76=1324.16~13241.6r/min。

综合考虑电动机和传动装置的尺寸、重量、价格和带传动、减速器的传动比,

选定型号为Y112M—4的三相异步电动机,额定功率为4.0

额定电流8.8A,满载转速 1440 r/min,同步转速1500r/min。

方案 电动机型号 额定功率

P

kw 电动机转速

电动机重量

N 参考价格

元 传动装置的传动比

同步转速 满载转速 总传动比 V带传动 减速器

1 Y112M-4 4 1500 1440 470 230 16.15 2.3 7.02

中心高

外型尺寸

L×(AC/2+AD)×HD 底脚安装尺寸A×B 地脚螺栓孔直径K 轴伸尺寸D×E 装键部位尺寸F×GD

132 515× 345× 315 216 ×178 12 36× 80 10 ×41

3.确定传动装置的总传动比和分配传动比

(1) 总传动比

由选定的电动机满载转速n 和工作机主动轴转速n,可得传动装置总传动比为 =n /n=1440/82.76=17.40

(2) 分配传动装置传动比

= ×

式中 分别为带传动和减速器的传动比。

为使V带传动外廓尺寸不致过大,初步取 =2.3,则减速器传动比为 = =17.40/2.3=7.57

根据各原则,查图得高速级传动比为 =3.24,则 = =2.33

4.计算传动装置的运动和动力参数

(1) 各轴转速

= =1440/2.3=626.09r/min

= =626.09/3.24=193.24r/min

= / =193.24/2.33=82.93 r/min

= =82.93 r/min

(2) 各轴输入功率

= × =3.25×0.96=3.12kW

= ×η2× =3.12×0.98×0.95=2.90kW

= ×η2× =2.97×0.98×0.95=2.70kW

= ×η2×η4=2.77×0.98×0.97=2.57kW

则各轴的输出功率:

= ×0.98=3.06 kW

= ×0.98=2.84 kW

= ×0.98=2.65kW

= ×0.98=2.52 kW

(3) 各轴输入转矩

= × × N•m

电动机轴的输出转矩 =9550 =9550×3.25/1440=21.55 N•

所以: = × × =21.55×2.3×0.96=47.58 N•m

= × × × =47.58×3.24×0.98×0.95=143.53 N•m

= × × × =143.53×2.33×0.98×0.95=311.35N•m

= × × =311.35×0.95×0.97=286.91 N•m

输出转矩: = ×0.98=46.63 N•m

= ×0.98=140.66 N•m

= ×0.98=305.12N•m

= ×0.98=281.17 N•m

运动和动力参数结果如下表

轴名 功率P KW 转矩T Nm 转速r/min

输入 输出 输入 输出

电动机轴 3.25 21.55 1440

1轴 3.12 3.06 47.58 46.63 626.09

2轴 2.90 2.84 143.53 140.66 193.24

3轴 2.70 2.65 311.35 305.12 82.93

4轴 2.57 2.52 286.91 281.17 82.93

5.设计V带和带轮

⑴ 确定计算功率

查课本 表9-9得:

,式中 为工作情况系数, 为传递的额定功率,既电机的额定功率.

⑵ 选择带型号

根据 , ,查课本 表8-8和 表8-9选用带型为A型带.

⑶ 选取带轮基准直径

查课本 表8-3和 表8-7得小带轮基准直径 ,则大带轮基准直径 ,式中ξ为带传动的滑动率,通常取(1%~2%),查课本 表8-7后取 。

⑷ 验算带速v

在5~25m/s范围内,V带充分发挥。

⑸ 确定中心距a和带的基准长度

由于 ,所以初步选取中心距a: ,初定中心距 ,所以带长,

= .查课本 表8-2选取基准长度 得实际中心距

⑹ 验算小带轮包角

,包角合适。

⑺ 确定v带根数z

因 ,带速 ,传动比 ,

查课本 表8-5a或8-5c和8-5b或8-5d,并由内插值法得 .

查课本 表8-2得 =0.96.

查课本 表8-8,并由内插值法得 =0.96

由 公式8-22得

故选Z=5根带。

⑻ 计算预紧力

查课本 表8-4可得 ,故:

单根普通V带张紧后的初拉力为

⑼ 计算作用在轴上的压轴力

利用 公式8-24可得:

6.齿轮的设计

(一)高速级齿轮传动的设计计算

1. 齿轮材料,热处理及精度

考虑此减速器的功率及现场安装的限制,故大小齿轮都选用硬齿面渐开线斜齿轮

(1) 齿轮材料及热处理

① 材料:高速级小齿轮选用 钢调质,齿面硬度为小齿轮 280HBS 取小齿齿数 =24

高速级大齿轮选用 钢正火,齿面硬度为大齿轮 240HBS Z =i×Z =3.24×24=77.76 取Z =78.

② 齿轮精度

按GB/T10095-1998,选择7级,齿根喷丸强化。

2.初步设计齿轮传动的主要尺寸

按齿面接触强度设计

确定各参数的值:

①试选 =1.6

查课本 图10-30 选取区域系数 Z =2.433

由课本 图10-26

②由课本 公式10-13计算应力值环数

N =60n j =60×626.09×1×(2×8×300×8)

=1.4425×10 h

N = =4.45×10 h #(3.25为齿数比,即3.25= )

③查课本 10-19图得:K =0.93 K =0.96

④齿轮的疲劳强度极限

取失效概率为1%,安全系数S=1,应用 公式10-12得:

[ ] = =0.93×550=511.5

[ ] = =0.96×450=432

许用接触应力

⑤查课本由 表10-6得: =189.8MP

由 表10-7得: =1

T=95.5×10 × =95.5×10 ×3.19/626.09

=4.86×10 N.m

3.设计计算

①小齿轮的分度圆直径d

=

②计算圆周速度

③计算齿宽b和模数

计算齿宽b

b= =49.53mm

计算摸数m

初选螺旋角 =14

=

④计算齿宽与高之比

齿高h=2.25 =2.25×2.00=4.50

= =11.01

⑤计算纵向重合度

=0.318 =1.903

⑥计算载荷系数K

使用系数 =1

根据 ,7级精度, 查课本由 表10-8得

动载系数K =1.07,

查课本由 表10-4得K 的计算公式:

K = +0.23×10 ×b

=1.12+0.18(1+0.6 1) ×1+0.23×10 ×49.53=1.42

查课本由 表10-13得: K =1.35

查课本由 表10-3 得: K = =1.2

故载荷系数:

K=K K K K =1×1.07×1.2×1.42=1.82

⑦按实际载荷系数校正所算得的分度圆直径

d =d =49.53× =51.73

⑧计算模数

=

4. 齿根弯曲疲劳强度设计

由弯曲强度的设计公式

⑴ 确定公式内各计算数值

① 小齿轮传递的转矩 =48.6kN•m

确定齿数z

因为是硬齿面,故取z =24,z =i z =3.24×24=77.76

传动比误差 i=u=z / z =78/24=3.25

Δi=0.032% 5%,允许

② 计算当量齿数

z =z /cos =24/ cos 14 =26.27

z =z /cos =78/ cos 14 =85.43

③ 初选齿宽系数

按对称布置,由表查得 =1

④ 初选螺旋角

初定螺旋角 =14

⑤ 载荷系数K

K=K K K K =1×1.07×1.2×1.35=1.73

⑥ 查取齿形系数Y 和应力校正系数Y

查课本由 表10-5得:

齿形系数Y =2.592 Y =2.211

应力校正系数Y =1.596 Y =1.774

⑦ 重合度系数Y

端面重合度近似为 =[1.88-3.2×( )] =[1.88-3.2×(1/24+1/78)]×cos14 =1.655

=arctg(tg /cos )=arctg(tg20 /cos14 )=20.64690

=14.07609

因为 = /cos ,则重合度系数为Y =0.25+0.75 cos / =0.673

⑧ 螺旋角系数Y

轴向重合度 = =1.825,

Y =1- =0.78

⑨ 计算大小齿轮的

安全系数由表查得S =1.25

工作寿命两班制,8年,每年工作300天

小齿轮应力循环次数N1=60nkt =60×271.47×1×8×300×2×8=6.255×10

大齿轮应力循环次数N2=N1/u=6.255×10 /3.24=1.9305×10

查课本由 表10-20c得到弯曲疲劳强度极限

小齿轮 大齿轮

查课本由 表10-18得弯曲疲劳寿命系数:

K =0.86 K =0.93

取弯曲疲劳安全系数 S=1.4

[ ] =

[ ] =

大齿轮的数值大.选用.

⑵ 设计计算

① 计算模数

对比计算结果,由齿面接触疲劳强度计算的法面模数m 大于由齿根弯曲疲劳强度计算的法面模数,按GB/T1357-1987圆整为标准模数,取m =2mm但为了同时满足接触疲劳强度,需要按接触疲劳强度算得的分度圆直径d =51.73 来计算应有的齿数.于是由:

z = =25.097 取z =25

那么z =3.24×25=81

② 几何尺寸计算

计算中心距 a= = =109.25

将中心距圆整为110

按圆整后的中心距修正螺旋角

=arccos

因 值改变不多,故参数 , , 等不必修正.

计算大.小齿轮的分度圆直径

d = =51.53

d = =166.97

计算齿轮宽度

B=

圆整的

(二) 低速级齿轮传动的设计计算

⑴ 材料:低速级小齿轮选用 钢调质,齿面硬度为小齿轮 280HBS 取小齿齿数 =30

速级大齿轮选用 钢正火,齿面硬度为大齿轮 240HBS z =2.33×30=69.9 圆整取z =70.

⑵ 齿轮精度

按GB/T10095-1998,选择7级,齿根喷丸强化。

⑶ 按齿面接触强度设计

1. 确定公式内的各计算数值

①试选K =1.6

②查课本由 图10-30选取区域系数Z =2.45

③试选 ,查课本由 图10-26查得

=0.83 =0.88 =0.83+0.88=1.71

应力循环次数

N =60×n ×j×L =60×193.24×1×(2×8×300×8)

=4.45×10

N = 1.91×10

由课本 图10-19查得接触疲劳寿命系数

K =0.94 K = 0.97

查课本由 图10-21d

按齿面硬度查得小齿轮的接触疲劳强度极限 ,

大齿轮的接触疲劳强度极限

取失效概率为1%,安全系数S=1,则接触疲劳许用应力

[ ] = =

[ ] = =0.98×550/1=517

[ 540.5

查课本由 表10-6查材料的弹性影响系数Z =189.8MP

选取齿宽系数

T=95.5×10 × =95.5×10 ×2.90/193.24

=14.33×10 N.m

=65.71

2. 计算圆周速度

0.665

3. 计算齿宽

b= d =1×65.71=65.71

4. 计算齿宽与齿高之比

模数 m =

齿高 h=2.25×m =2.25×2.142=5.4621

=65.71/5.4621=12.03

5. 计算纵向重合度

6. 计算载荷系数K

K =1.12+0.18(1+0.6 +0.23×10 ×b

=1.12+0.18(1+0.6)+ 0.23×10 ×65.71=1.4231

使用系数K =1

同高速齿轮的设计,查表选取各数值

=1.04 K =1.35 K =K =1.2

故载荷系数

K= =1×1.04×1.2×1.4231=1.776

7. 按实际载荷系数校正所算的分度圆直径

d =d =65.71×

计算模数

3. 按齿根弯曲强度设计

m≥

一确定公式内各计算数值

(1) 计算小齿轮传递的转矩 =143.3kN•m

(2) 确定齿数z

因为是硬齿面,故取z =30,z =i ×z =2.33×30=69.9

传动比误差 i=u=z / z =69.9/30=2.33

Δi=0.032% 5%,允许

(3) 初选齿宽系数

按对称布置,由表查得 =1

(4) 初选螺旋角

初定螺旋角 =12

(5) 载荷系数K

K=K K K K =1×1.04×1.2×1.35=1.6848

(6) 当量齿数

z =z /cos =30/ cos 12 =32.056

z =z /cos =70/ cos 12 =74.797

由课本 表10-5查得齿形系数Y 和应力修正系数Y

(7) 螺旋角系数Y

轴向重合度 = =2.03

Y =1- =0.797

(8) 计算大小齿轮的

查课本由 图10-20c得齿轮弯曲疲劳强度极限

查课本由 图10-18得弯曲疲劳寿命系数

K =0.90 K =0.93 S=1.4

[ ] =

[ ] =

计算大小齿轮的 ,并加以比较

大齿轮的数值大,选用大齿轮的尺寸设计计算.

① 计算模数

对比计算结果,由齿面接触疲劳强度计算的法面模数m 大于由齿根弯曲疲劳强度计算的法面模数,按GB/T1357-1987圆整为标准模数,取m =3mm但为了同时满足接触疲劳强度,需要按接触疲劳强度算得的分度圆直径d =72.91 来计算应有的齿数.

z = =27.77 取z =30

z =2.33×30=69.9 取z =70

② 初算主要尺寸

计算中心距 a= = =102.234

将中心距圆整为103

修正螺旋角

=arccos

因 值改变不多,故参数 , , 等不必修正

分度圆直径

d = =61.34

d = =143.12

计算齿轮宽度

圆整后取

低速级大齿轮如上图:

V带齿轮各设计参数附表

1.各传动比

V带 高速级齿轮 低速级齿轮

2.3 3.24 2.33

2. 各轴转速n

(r/min)

(r/min) (r/min)

(r/min)

626.09 193.24 82.93 82.93

3. 各轴输入功率 P

(kw)

(kw)

(kw)

(kw)

3.12 2.90 2.70 2.57

4. 各轴输入转矩 T

(kN•m)

(kN•m) (kN•m) (kN•m)

47.58 143.53 311.35 286.91

5. 带轮主要参数

小轮直径 (mm) 大轮直径 (mm)

中心距a(mm) 基准长度 (mm)

带的根数z

90 224 471 1400 5

7.传动轴承和传动轴的设计

1. 传动轴承的设计

⑴. 求输出轴上的功率P ,转速 ,转矩

P =2.70KW =82.93r/min

=311.35N.m

⑵. 求作用在齿轮上的力

已知低速级大齿轮的分度圆直径为

=143.21

而 F =

F = F

F = F tan =4348.16×0.246734=1072.84N

圆周力F ,径向力F 及轴向力F 的方向如图示:

⑶. 初步确定轴的最小直径

先按课本15-2初步估算轴的最小直径,选取轴的材料为45钢,调质处理,根据课本 取

输出轴的最小直径显然是安装联轴器处的直径 ,为了使所选的轴与联轴器吻合,故需同时选取联轴器的型号

查课本 ,选取

因为计算转矩小于联轴器公称转矩,所以

查《机械设计手册》

选取LT7型弹性套柱销联轴器其公称转矩为500Nm,半联轴器的孔径

⑷. 根据轴向定位的要求确定轴的各段直径和长度

① 为了满足半联轴器的要求的轴向定位要求,Ⅰ-Ⅱ轴段右端需要制出一轴肩,故取Ⅱ-Ⅲ的直径 ;左端用轴端挡圈定位,按轴端直径取挡圈直径 半联轴器与 为了保证轴端挡圈只压在半联轴器上而不压在轴端上, 故Ⅰ-Ⅱ的长度应比 略短一些,现取

② 初步选择滚动轴承.因轴承同时受有径向力和轴向力的作用,故选用单列角接触球轴承.参照工作要求并根据 ,由轴承产品目录中初步选取0基本游隙组 标准精度级的单列角接触球轴承7010C型.

D B

轴承代号

45 85 19 58.8 73.2 7209AC

45 85 19 60.5 70.2 7209B

45 100 25 66.0 80.0 7309B

50 80 16 59.2 70.9 7010C

50 80 16 59.2 70.9 7010AC

50 90 20 62.4 77.7 7210C

2. 从动轴的设计

对于选取的单向角接触球轴承其尺寸为的 ,故 ;而 .

右端滚动轴承采用轴肩进行轴向定位.由手册上查得7010C型轴承定位轴肩高度 mm,

③ 取安装齿轮处的轴段 ;齿轮的右端与左轴承之间采用套筒定位.已知齿轮 的宽度为75mm,为了使套筒端面可靠地压紧齿轮,此轴段应略短于轮毂宽度,故取 . 齿轮的左端采用轴肩定位,轴肩高3.5,取 .轴环宽度 ,取b=8mm.

④ 轴承端盖的总宽度为20mm(由减速器及轴承端盖的结构设计而定) .根据轴承端盖的装拆及便于对轴承添加润滑脂的要求,取端盖的外端面与半联轴器右端面间的距离 ,故取 .

⑤ 取齿轮距箱体内壁之距离a=16 ,两圆柱齿轮间的距离c=20 .考虑到箱体的铸造误差,在确定滚动轴承位置时,应距箱体内壁一段距离 s,取s=8 ,已知滚动轴承宽度T=16 ,

高速齿轮轮毂长L=50 ,则

至此,已初步确定了轴的各端直径和长度.

5. 求轴上的载荷

首先根据结构图作出轴的计算简图, 确定顶轴承的支点位置时,

查《机械设计手册》20-149表20.6-7.

对于7010C型的角接触球轴承,a=16.7mm,因此,做为简支梁的轴的支承跨距.

传动轴总体设计结构图:

(从动轴)

(中间轴)

(主动轴)

从动轴的载荷分析图:

6. 按弯曲扭转合成应力校核轴的强度

根据

= =

前已选轴材料为45钢,调质处理。

查表15-1得[ ]=60MP

〈 [ ] 此轴合理安全

7. 精确校核轴的疲劳强度.

⑴. 判断危险截面

截面A,Ⅱ,Ⅲ,B只受扭矩作用。所以A Ⅱ Ⅲ B无需校核.从应力集中对轴的疲劳强度的影响来看,截面Ⅵ和Ⅶ处过盈配合引起的应力集中最严重,从受载来看,截面C上的应力最大.截面Ⅵ的应力集中的影响和截面Ⅶ的相近,但是截面Ⅵ不受扭矩作用,同时轴径也较大,故不必做强度校核.截面C上虽然应力最大,但是应力集中不大,而且这里的直径最大,故C截面也不必做强度校核,截面Ⅳ和Ⅴ显然更加不必要做强度校核.由第3章的附录可知,键槽的应力集中较系数比过盈配合的小,因而,该轴只需胶合截面Ⅶ左右两侧需验证即可.

⑵. 截面Ⅶ左侧。

抗弯系数 W=0.1 = 0.1 =12500

抗扭系数 =0.2 =0.2 =25000

截面Ⅶ的右侧的弯矩M为

截面Ⅳ上的扭矩 为 =311.35

截面上的弯曲应力

截面上的扭转应力

= =

轴的材料为45钢。调质处理。

由课本 表15-1查得:

经插入后得

2.0 =1.31

轴性系数为

=0.85

K =1+ =1.82

K =1+ ( -1)=1.26

所以

综合系数为: K =2.8

K =1.62

碳钢的特性系数 取0.1

取0.05

安全系数

S = 25.13

S 13.71

≥S=1.5 所以它是安全的

截面Ⅳ右侧

抗弯系数 W=0.1 = 0.1 =12500

抗扭系数 =0.2 =0.2 =25000

截面Ⅳ左侧的弯矩M为 M=133560

截面Ⅳ上的扭矩 为 =295

截面上的弯曲应力

截面上的扭转应力

= = K =

K =

所以

综合系数为:

K =2.8 K =1.62

碳钢的特性系数

取0.1 取0.05

安全系数

S = 25.13

S 13.71

≥S=1.5 所以它是安全的

8.键的设计和计算

①选择键联接的类型和尺寸

一般8级以上精度的尺寸的齿轮有定心精度要求,应用平键.

根据 d =55 d =65

查表6-1取: 键宽 b =16 h =10 =36

b =20 h =12 =50

②校和键联接的强度

查表6-2得 [ ]=110MP

工作长度 36-16=20

50-20=30

③键与轮毂键槽的接触高度

K =0.5 h =5

K =0.5 h =6

由式(6-1)得:

<[ ]

<[ ]

两者都合适

取键标记为:

键2:16×36 A GB/T1096-1979

键3:20×50 A GB/T1096-1979

9.箱体结构的设计

减速器的箱体采用铸造(HT200)制成,采用剖分式结构为了保证齿轮佳合质量,

大端盖分机体采用 配合.

1. 机体有足够的刚度

在机体为加肋,外轮廓为长方形,增强了轴承座刚度

2. 考虑到机体内零件的润滑,密封散热。

因其传动件速度小于12m/s,故采用侵油润油,同时为了避免油搅得沉渣溅起,齿顶到油池底面的距离H为40mm

为保证机盖与机座连接处密封,联接凸缘应有足够的宽度,联接表面应精创,其表面粗糙度为

3. 机体结构有良好的工艺性.

铸件壁厚为10,圆角半径为R=3。机体外型简单,拔模方便.

4. 对附件设计

A 视孔盖和窥视孔

在机盖顶部开有窥视孔,能看到 传动零件齿合区的位置,并有足够的空间,以便于能伸入进行操作,窥视孔有盖板,机体上开窥视孔与凸缘一块,有便于机械加工出支承盖板的表面并用垫片加强密封,盖板用铸铁制成,用M6紧固

B 油螺塞:

放油孔位于油池最底处,并安排在减速器不与其他部件靠近的一侧,以便放油,放油孔用螺塞堵住,因此油孔处的机体外壁应凸起一块,由机械加工成螺塞头部的支承面,并加封油圈加以密封。

C 油标:

油标位在便于观察减速器油面及油面稳定之处。

油尺安置的部位不能太低,以防油进入油尺座孔而溢出.

D 通气孔:

由于减速器运转时,机体内温度升高,气压增大,为便于排气,在机盖顶部的窥视孔改上安装通气器,以便达到体内为压力平衡.

E 盖螺钉:

启盖螺钉上的螺纹长度要大于机盖联结凸缘的厚度。

钉杆端部要做成圆柱形,以免破坏螺纹.

F 位销:

为保证剖分式机体的轴承座孔的加工及装配精度,在机体联结凸缘的长度方向各安装一圆锥定位销,以提高定位精度.

G 吊钩:

在机盖上直接铸出吊钩和吊环,用以起吊或搬运较重的物体.

减速器机体结构尺寸如下:

名称 符号 计算公式 结果

箱座壁厚

10

箱盖壁厚

9

箱盖凸缘厚度

12

箱座凸缘厚度

15

箱座底凸缘厚度

25

地脚螺钉直径

M24

地脚螺钉数目

查手册 6

轴承旁联接螺栓直径

M12

机盖与机座联接螺栓直径

=(0.5~0.6)

M10

轴承端盖螺钉直径

=(0.4~0.5)

10

视孔盖螺钉直径

=(0.3~0.4)

8

定位销直径

=(0.7~0.8)

8

, , 至外机壁距离

查机械课程设计指导书表4 34

22

18

, 至凸缘边缘距离

查机械课程设计指导书表4 28

16

外机壁至轴承座端面距离

= + +(8~12)

50

大齿轮顶圆与内机壁距离

1.2

15

齿轮端面与内机壁距离

10

机盖,机座肋厚

9 8.5

轴承端盖外径

+(5~5.5)

120(1轴)125(2轴)

150(3轴)

轴承旁联结螺栓距离

120(1轴)125(2轴)

150(3轴)

10. 润滑密封设计

对于二级圆柱齿轮减速器,因为传动装置属于轻型的,且传速较低,所以其速度远远小于 ,所以采用脂润滑,箱体内选用SH0357-92中的50号润滑,装至规定高度.

油的深度为H+

H=30 =34

所以H+ =30+34=64

其中油的粘度大,化学合成油,润滑效果好。

密封性来讲为了保证机盖与机座联接处密封,联接

凸缘应有足够的宽度,联接表面应精创,其表面粗度应为

密封的表面要经过刮研。而且,凸缘联接螺柱之间的距离不宜太

大,国150mm。并匀均布置,保证部分面处的密封性。

11.联轴器设计

1.类型选择.

为了隔离振动和冲击,选用弹性套柱销联轴器.

2.载荷计算.

公称转矩:T=9550 9550 333.5

带式输送机传动装置设计

一、带式输送机传动装置,可伸缩胶带输送机与普通胶带输送机的工作原理一样,是以胶带作为牵引承载机的连续运输设备,不过增加了储带装置和收放胶带装置等,当游动小车向机尾一端移动时,胶带进入储带装置内,机尾回缩;反之则机尾延伸,因而使输送机具有可伸缩的性能。

二、设计安装调试:

1.输送机的各支腿、立柱或平台用化学锚栓牢固地固定于地面上。

2.机架上各个部件的安装螺栓应全部紧固。各托辊应转动灵活。托辊轴心线、传动滚筒、改向滚筒的轴心线与机架纵向的中心线应垂直。

3.螺旋张紧行程为机长的1%~1.5%。

4.拉绳开关安装于输送机一侧,两开关间用覆塑钢丝绳连接,松紧适度。

5.跑偏开关安装于输送机头尾部两侧,成对安装。开关的立辊与输送带带边垂直,且保证带边位于立辊高度的1/3处。立辊与输送带边缘距离为50~70mm。

6.各清扫器、导料槽的橡胶刮板应与输送带完全接触,否则,调节清扫器和导料槽的安装螺栓使刮板与输送带接触。

7.安装无误后空载试运行。试运行的时间不少于2小时。并进行如下检查:

(1)各托辊应与输送带接触,转动灵活。

(2)各润滑处无漏油现象。

(3)各紧固件无松动。

(4)轴承温升不大于40°C,且最高温度不超过80°C。

(5)正常运行时,输送机应运行平稳,无跑偏,无异常噪音。

KTR POLY联轴器|POLY弹性联轴器的价格|货期哪里可以查?

济南埃姆依机电设备有限责任公司是一家多年从事机电一体化设备销售的专业性公司

公司成立伊始,就把“为客户提供一流的传动机械设备”作为经营理念;把“客户是上帝,一切为用户着想”作为服务理念。全心全意为广大用户服务,经过全体员工的不懈努力,公司业绩蒸蒸日上。现在我公司已成为多个国内外知名品牌在山东的核心代理商,我们代理的主要产品是:汉森减速机系列、、电机系列以及KTR联轴器系列,各个产品的价格优势都非常明显。

主要经营产品:

KTR联轴器,德国EK2联轴器,EKL联轴器

纽卡特(Neugart)行星减速机

伦茨伺服系统

R+W联轴器

汉森减速机

三木联轴器

电话:

0531-88014512

传真:

0531-88014557

邮箱:

jn_me@126.com

地址:山东省济南市花园路45号

网址:

24小时服务:

(0)13465310635